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ABSTRACT Open Process Automation (OPA) and Digital Twin (DT) technologies show great promise to
reduce risk, downtime, and energy consumption, while improving safety and efficiency inmanufacturing sys-
tems. OPA defines a reference architecture for the construction of scalable, reliable, interoperable, and secure
automation systems with products from multiple vendors as a single, cohesive system. DTs are purpose-
driven dynamic digital replicas of physical assets, processes, systems, or products. Both technologies
enable increased options and competition for accelerating future innovation. However, there are significant
challenges to adopting these technologies, including ‘‘plug-and-play’’ interoperability, access to data, access
to equipment, and the combination of different DTs for system-wide improvements. This paper demonstrates
and evaluates a DT Framework solution for performance monitoring in process manufacturing systems that
aims to avoid unplanned downtime, a prevalent challenge that pressures profitability in manufacturing. The
DT framework is built and demonstrated through an OPA testbed system that allows seamless gathering
and analyzing of data from a process manufacturing line. The proposed DT framework solution provides
guidelines to develop, test, and evaluate new system-wide DT solutions without interrupting production
operations and without costly R&D investments.

INDEX TERMS Smart manufacturing, Industry 4.0, automation, predictive maintenance, virtual commis-
sioning.

I. INTRODUCTION
Digital transformation has become a fundamental topic for
executive leadership in almost all manufacturing companies
today. Digital transformation adoption across industries has
become cost-effective thanks to the recent advancements
in information and communication technologies, includ-
ing cloud computing, visualization capabilities, Industrial
Internet of Things (IIoT), additive manufacturing, big data,
advanced analytics, artificial intelligence, blockchain tech-
nology, and autonomous robotics. These technologies have
enabled cyber-physical integration that allows data collec-
tion, analysis, and visualization to help make well-informed
decisions and thus optimize the manufacturing operations.

The associate editor coordinating the review of this manuscript and

approving it for publication was Cinzia Bernardeschi .

Digital solutions promise significant value for an organi-
zation spanning the improvement of productivity, efficiency,
and quality as well as the reduction of costs. Of particular
interest recently is the concept of a Digital Twin (DT): a
purpose-driven software replica of a physical asset, system,
or process, which combines modeling information with data
analytics to help optimize business performance [1]–[5]. One
of the key benefits of DT technology is that it can pro-
vide time-critical comprehensive convergence between the
physical world (e.g., machines, equipment, etc.) and digital
world (e.g., computation, networking, etc.). This convergence
promotes richer models that yield more realistic and holis-
tic measurements of unpredictability throughout a product
lifecycle spanning design, manufacturing, operation, service,
upgrades, etc. [6]–[9].

Discrete and continuous process manufacturing compa-
nies and other asset-intensive industries such as oil and gas,
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mining, energy, and utilities, believe that DT technology
should be at the center of digital transformation efforts [10].
However, compared to discrete manufacturing, DT adoption
in process manufacturing is still at an early stage with imple-
mentations limited to isolated one-off solutions instead of
industry-wide DT applications, which limits the benefits of
DT technology implementation [11].

To gain the full potential of DT technology, different DTs
need to interoperate across the manufacturing value chain.
Interoperability could be achieved through system openness
to extensions by interoperable components from various ven-
dors. Most recently, there is a tendency towards embracing
Open Process Automation (OPA) in industrial systems by
adopting communication protocols that allow applications by
multiple vendors to seamlessly interoperate, such as the Open
Platform Communications Unified Architecture (OPC UA)
[12]. Additionally, a number of companion standards to
define new operational technology system architectures are
underway such as the Open–Process Automation Standard
(O-PAS) [13] and the User Association of Automation Tech-
nology in Process Industries NAMUR Open Architecture
(NOA) [14]. The combination of OPA and DT technologies
shows great promise to reduce risk, down-time, and energy
consumption, while improving safety and efficiency in man-
ufacturing systems.

In addition to providing high quality products, to stay
competitive, manufacturing systems are required to discover
unexploited efficiencies across the value chain to reduce costs
and increase profitability [15]–[17]. A prevalent challenge
that impedes profitability in manufacturing is unplanned
downtime. This challenge arises from the absence of transpar-
ent insight into the performance of the manufacturing assets
required to detect, predict, and prevent failures. Performance
monitoring through DT technology is a promising approach
to minimize the risk of unplanned downtime. Performance
monitoring gives real-time visibility into specific equipment
or process parameters including health status, condition, and
performance through key performance indicators (KPIs) that
are used to inform when assets need to be inspected. OPA
and DT technologies enable the collection, visualization,
and analysis of asset health data to derive KPIs that can be
combined and shared across departments to create a more
comprehensive view of themanufacturing system. Plant oper-
ators and maintenance personnel can coordinate using this
aggregated information to preserve throughput targets, and
improve product quality, while reducing downtime for an
enhanced customer experience.

This paper presents a performance monitoring approach
that is based on OPA and DT technologies to help perform
maintenance at the right time and thus avoid unplanned down-
time. The performance monitoring approach was developed
as part of an open automation testbed framework that consists
of an OPA and DT sandbox with a self-contained Integra-
tion Test Environment (ITE) platform. The testbed combines
system and software platforms that demonstrate and evaluate
OPA and DT technologies through cross-vendor systems.

This paper focuses on the software portion of the testbed.
It illustrates the steps towards the development and imple-
mentation of a system-wide DT framework including an
emulation of the manufacturing process system, for perfor-
mance monitoring. Similar steps can be followed to generate
comprehensive unified DT solutions beyond performance
monitoring. The paper provides the following contributions:

1) Development of a manufacturing process system emu-
lator that provides a physics-based virtual model of the
manufacturing process. The emulator is used to gener-
ate data for initial training and testing of the DT func-
tions prior to the actual hardware being available. Such
a process emulator might be broken into subsystems
that can be replaced by actual hardware subsystems
as they become available, thus accelerating the ability
to test the system as part of a virtual commissioning
approach, including its DT components.

2) The development of a DT Framework (a combination
of DTs) to support system-wide performance moni-
toring in process manufacturing systems. Within the
scope of this work, the DT framework consists of the
following components:

a) An equipment (e.g., pump) performance monitor-
ing DT that is used to detect degradation onset,
classify equipment health state, and estimate the
overall equipment health percentage.

b) AControl Loop PerformanceMonitoring (CLPM)
DT that monitors the performance of the Propor-
tional Integral Derivative (PID) controller within
the process closed loop.

c) A process performance monitoring DT that is
used to detect anomalies in the process and esti-
mate the health percentage of a process unit.

The DT framework presented in this work illustrates an
approach towards an extensible DT solution that scales up
from equipment, to units, to process manufacturing lines,
to support multi-facility operation. Practitioners should be
able to adapt the framework to other tools and data in coopera-
tionwithOPA computing frameworks to enable organizations
to more quickly evaluate operations, test assumptions for
innovation, and improve capabilities.

The rest of the paper is organized as follows. Section II
provides background on DT and DT applications in pro-
cess manufacturing. An overview of the baseline DT frame-
work used to guide the design and development of the pro-
posed performance monitoring DT solution is also given
in Section II. Section III describes the development of the
manufacturing process system emulator. Section IV details
the development of the performance monitoring DT frame-
work solution. Section V discusses how the KPIs provided
by the DT models can be leveraged to help plant operators
andmaintenance personnel perform just-in-timemaintenance
and thus reduce downtime. Section VI discusses the results
and potential extensions of this work. Finally, Section VII
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summarizes the contributions of this paper and presents some
future research avenues for this work.

II. BACKGROUND
A. RELATED WORKS
With the emergence of Smart Manufacturing and Industry
4.0, manufacturers are currently considering a wide range of
digital technologies to improve productivity, efficiency, and
safety of their operations, whileminimizing variability, health
and environment risks, as well as costs. Embracing emerging
digital technologies allows companies to construct DTs of
their assets and systems to gain a comprehensive visibility
over the entire manufacturing value chain.

DT technology has been extensively investigated in dis-
crete manufacturing. The literature search in [3] found that
industrial applications of DTs focus on the areas of design,
production, and prognostics & health monitoring. In [18],
the author pointed out that there are seven ways in which
DTs are used to improve manufacturing operations, namely,
product design, process optimization, quality management,
supply chain management, predictive maintenance, cross-
discipline collaboration, and customer experience analy-
sis. For instance, in product design, Tao et al. proposed a
DT-based product design approach that connects the physical
and virtual products to improve product customization [9].
In production, Leng et al. proposed a DT conceptual frame-
work for monitoring and optimizing physical manufactur-
ing workshops based on context data [19]. In the predictive
maintenance field, Liu et al. proposed a DT approach for
the evaluation of process plans with dynamic changes in
machining conditions and DT-related uncertainties as pre-
sented in [20]. Wang et al. [21], presented a health mon-
itoring approach that leverages data analytics and subject
matter expertise for online machine-part state classification
and estimation for improved performancemonitoring. Guerra
et al. proposed a DT method for the optimization of ultra-
precisionmotion systems. TheDT combines virtual represen-
tations of mechanical and electrical components to emulate
non-linearities (backlash and friction) and the corresponding
control system [22]. A thorough review of existing liter-
ature concerning the concept of Digital Twin for mainte-
nance applications can be found in [23]. In human-machine
interaction, De Magistris et al. propose a dynamic digital
human model that is capable of computing dynamic, realistic
movements and internal characteristics in quasi-real time,
based on a simple description of future work tasks, in order
to achieve reliable ergonomics assessments of various work
task scenarios [24].

Compared to discrete manufacturing, DT adoption in pro-
cess manufacturing is still at an early stage with imple-
mentations limited to isolated one-off solutions instead of
industry-wide DT applications, which limits the benefits of
DT technology implementation [11]. The literature search
in [11] found that asset integritymonitoring, project planning,
and life cycle management are the key application areas of
DT technology in the process industry. In asset integrity

monitoring, the authors in [25] presented a DT concept that
provides estimates of fatigue life for assets in the oil & gas
industry aimed at extending the life of these assets. In project
planning, Aivaliotis et al. investigated the adoption of a
representative DT of the production system used to conduct
a detailed analysis of various alternative configurations of
the production system to assess the possibility of increas-
ing productivity in short and medium time horizons [26].
In lifecycle management, the work in [27] investigated the
use of simulation to resolve the conflicts involving costs,
time, and quality in process plants throughout their lifecycle.
The majority of these works presented theoretical concepts
rather than actual industrial implementations. Also, these
works focus on one-off solutions instead of system-wide DT
applications. To address this issue, this paper uses the baseline
O-O concepts and systematic methodology for DT solution
development proposed in [5] and [28] to demonstrate how a
practical system-wide performance monitoring DT solution
could be easily derived.

B. FOUNDATION: THE DT BASELINE FRAMEWORK
In this subsection, the DT baseline concepts adopted to struc-
turally and easily deliver practical DT solutions are briefly
recalled. These concepts include a DT definition and Object-
Oriented (O-O) constructs that allow DT capabilities to be
extended, reused, and interchanged [5], [28].

• DT definition: The DT definition used within this paper
is the the following. A DT is a purpose-driven dynamic
digital replica of a physical asset, process, system, or
product that is driven by a need for improvement of
the manufacturing environment (e.g., reduce unplanned
downtime, generate a production plan, improve quality,
etc.). A DT provides a capability in terms of detection,
prediction, and/or prescription so that it can deliver on its
intended purpose and provide a value-add capability to a
DT information client in the manufacturing ecosystem.
To provide its capability, a DT combines a modeling
resource with a computational engine. The modeling
resource, which can consist of one or more models,
is used to emulate some aspect of the physical asset,
process, system, or product. Models generally use ana-
lytics technology to define behavior within a particular
environment defined by context. The DT computational
engine coordinates the use of the models and provides
the required DT outputs (i.e., deliver on the DT purpose)
to the DT client [5].

• DT class: A type of DT that describes a set of DT objects
that share the same attributes, operations, methods, rela-
tionships, and semantics in order to deliver a specific
capability for the DT user [5], [29].

• DT object: Particular entity in the manufacturing
ecosystem, such as an asset, system, component, pro-
cess, product, person, etc. with a well-defined boundary
and identity that encapsulates state and behavior [5],
[28], [29].
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FIGURE 1. Emulated factory framework panel.

• Generalization/specialization: A relationship in which
objects of the specialized element (the child) are sub-
stitutable for objects of the generalized element (the
parent). This relationship allows for the extrapolation
of capabilities usually from general to specific [5], [28],
[30].

• Aggregation: A ‘‘has-a’’ relationship, meaning that an
object of the whole has objects of the part. Aggregation
is used to model a ‘‘whole/part’’ relationship, in which
one class represents a larger thing (the ‘‘whole’’), which
consists of smaller things (the ‘‘parts’’) [5], [28], [30].

• DT O-O hierarchy model: General O-O conceptual
model that structures the DT classes that constitute the
entire DT solution.

III. THE EMULATED FACTORY FRAMEWORK
This section introduces the emulated factory framework sup-
porting the DT development. First, we provide an overview
of the assemblies constituting the emulated framework. Then,
we describe the development of the manufacturing process
model assembly, its simulation results, and its real-time per-
formance as well as the simulation and generation of healthy
and faulty data.

A. OVERVIEW OF THE EMULATED FACTORY FRAMEWORK
The factory emulator framework is built using Applied
Dynamics International’s ADEPT Framework product,
which allows multiple real-time execution assemblies to be
designed, distributed, and coordinated as a single integrated
real-time framework [31]. The assemblies may be distributed
across multiple servers, with each assembly being assigned
to a single CPU core on a multicore server, which could be
cloud-based.

FIGURE 2. The factory process piping and instrumentation diagram.

Several real-time servers are used for the emulated factory
framework, with particular assemblies assigned to generate
the emulated factory process data, to package it into industry
standard communication protocols, and to send it across the
integration test environment network. Data are transferred
via dedicated data protocol interface assemblies within the
OPA-DT framework, and then used by the OPA-DT assem-
blies to monitor process and equipment performance.

As a portion of the factory emulator framework, the two
model assemblies discussed below run on a single Nvidia
Jetson AGX Xavier server, with an Ubuntu Linux OS and
ADEPT run-time support. These are the manufacturing pro-
cess model assembly, which supports the Graphical User
Interface (GUI) illustrated at the top of Fig. 1, and the sim-
ulated aging and failure injection model assembly, which
supports the GUI illustrated at the bottom of the figure.

B. THE MANUFACTURING PROCESS MODEL ASSEMBLY
A Piping and Instrumentation Diagram (P&ID) of the manu-
facturing process being modeled by the assembly is shown
in Fig. 2. The diagram illustrates a typical plant process,
using pump PMP and control valves CV1, CV2 to transfer
fluid at a controlled rate from tank Ti on the left, to tank To
on the right. A tachometer on motor PM provides feedback
signalMS, which is required to control the pump at a constant
speed, high enough to satisfy the maximum flow demand.
Flow meters FM1 and FM2 provide the feedback required to
successfully operate the control valves such that they produce
the commanded fluid flow rate.

A simplified representation of this P&ID is also shown
in the panel on the top right of Fig. 1. The entire process
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manufacturing simulation model is implemented using a
Simulink model, together with a Simscape subsystem for
physical process modeling, imported as a real-time assembly
into the emulated factory framework. Note that depending on
the DT purpose, other aspects of the system physics (e.g., heat
and mass transfer, etc.) can also be modeled and added to the
emulated factory framework.

C. REAL TIME PERFORMANCE OF THE MANUFACTURING
PROCESS MODEL ASSEMBLY
The nonlinear and numerically stiff nature of the differential
equations describing fluid flow in the manufacturing process
model precludes using an explicit integration algorithm to
achieve a fixed numerical integration step size in Simscape.
An implicit trapezoidal rule was found to give satisfactory
integration accuracy with fixed step size, but the variable
number of iterations required to achieve a specified accuracy
with an implicit integration algorithm makes it difficult to
guarantee each step will complete within the allotted 10 ms
frame time. Somemodel features were added (e.g. pump leak-
age), and some removed (e.g. fluid compressibility), to reduce
the number of frame overruns. The best numerical integration
performance was obtained by consolidating all continuous-
time modeling features into the Simscape subsystem, leaving
Simulink to handle only discrete-time modeling features.

D. SIMULATED AGING AND FAILURE INJECTION MODEL
ASSEMBLY
The simulated aging and failure injection model assembly is
designed to allow demonstration of DTmanufacturing equip-
ment performance monitoring and failure detection. Specif-
ically the assembly simulates pump vibration accelerometer
spectra, with time-based evolution of the spectral character-
istics, from normal operating conditions, through failing and
failed operating conditions.

The assembly simulates 100 frequency bins of 100 Hz
spectral width, representing an underlying sample rate of
20 kHz for the pump accelerometer data. Each sampled
frequency bin is represented as an independent and expo-
nentially distributed random variable, with its mean value a
function of the frequency bin index. The simulated spectra are
averaged at a 100 Hz rate, and averaged spectra are supplied
to the DT for pump performance monitoring, which is further
described in Section IV.

Mean frequency bin amplitudes were derived from
approximately 600 experimental spectra, representing time-
evolution of the spectra through the three operating condi-
tions. A time-dependent four-parameter representation of the
spectrumwas then derived from the bin amplitudes, and these
parameters are used by the assembly to compute mean bin
amplitudes as a function of time and frequency bin.

The assembly simulates pump wear at an accelerated rate
by time-varying the θ parameters on an accelerated schedule,
controlled and initiated by operator input to the lower section
of the GUI panel illustrated in Fig. 1.

IV. DIGITAL TWIN-BASED PERFORMANCE MONITORING
This section describes the components of the performance
monitoring DT framework solution developed for the studied
process manufacturing system. First, an O-O DT hierarchy
combining different individual DTs is described. Then, each
of the individual DTs developed for equipment, process, and
controller are detailed separately.

A. OBJECT-ORIENTED HIERARCHY OF THE
PERFORMANCE MONITORING DT SOLUTION
The O-O hierarchy of the performance monitoring DT solu-
tion presented in this section highlights the need to incor-
porate instances of different DT classes to provide benefits
above and beyond what is provided by the individual DTs.
Each of the DT classes complies with aspects of the DT
definition (see section II-B), and their collaboration can be
facilitated through the DT O-O hierarchy.

Small deviations in capacity and downtime in process man-
ufacturing systems may have substantial economic impacts.
ADT solution that provides the ability to determine the health
state of the equipment, process, and control, understand what
might be wrong, and thus avoid unplanned downtime or
failures is indispensable. Based on this need, three DT classes
are identified for the process manufacturing system, namely:

• A DT class that monitors the performance of equipment
(here we chose a pump object as an example of equip-
ment). The pump performance monitoring DT class
uses data collected from the pump to detect degradation
onset, classify the health state (three health states are
classified, namely: normal, degrading, and faulty), and
estimate the overall pump health percentage

• A DT class that monitors process performance by merg-
ing data from the process and PID controller. To detect
process anomalies, the process performance DT moni-
tors whether the set-points are tracked or not while pre-
dicting and observing the behavior of the PID controller
action

• A DT class that monitors the PID controller perfor-
mance. This DT provides an indication of the health state
and performance of the PID controller.

Figure 3 shows the hierarchy of the overall DT solution.
The DT hierarchy combines the three individual performance
monitoring DT classes for equipment (pump), process, and
controller. The combination of these three individual DT
classes builds up to a system performance monitoring DT,
where each DT class delivers a set of KPIs that relate to
the DT purpose as well as a confidence interval metric that
quantifies the quality of the DT output. Details about the
development of each of the individual DT classes follow.

B. EQUIPMENT PERFORMANCE MONITORING DT
1) CONCEPT
The purpose of the pump performance monitoring DT is
to provide KPIs that allow a DT client to make deci-
sions on scheduling just-in-time maintenance to avoid pump
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FIGURE 3. DT solution hierarchy.

unplanned downtime. The KPIs that the pump performance
monitoring DT outputs consist of: (1) degradation onset
detection, (2) health state classification (i.e., normal, degrad-
ing, and faulty), and (3) overall pump health percentage.
In addition to these three output KPIs, the DT provides a
confidence interval output that quantifies uncertainty around
the degradation onset detection and state classification.

Data from the simulated aging and failure injection model
assembly described in Section III-D are used to train and eval-
uate the pump performance monitoring DT. Different health
indicators extracted from the data are combined to detect
pump degradation onset, classify its state, provide confidence
intervals, and estimate the health percentage.

2) DATA ACQUISITION AND PREPROCESSING
Sensor data are collected and provided to the DTs at a rate
of 100 Hz. For instance, vibration data are delivered to the
pump DT in the form of single-sided frequency spectra that
consist of 100 frequency bins of 100 Hz spectral width, rep-
resenting an underlying sample rate of 20 kHz. The acquired
raw vibration spectra must be preprocessed to extract and
select the descriptors that help to reveal any deviations in
the pump behavior. Vibration data preprocessing aims at
transforming the provided spectra into signals in a different
domain (time or time–frequency) that represents the degrada-
tion dynamics. Temporal features focusing on calculations of
the statistical parameters of the signal are useful for classify-
ing state, detecting degradation, and performing diagnostics
of failures [32]. Using a set of run-to-failure vibration data,
multiple features were extracted and compared in terms of
trendability [33], i.e., which features show clear degradation
profiles. Based on this comparison, the RMS and Peak-to-
Peak vibration, as well as the Kurtosis, and Skewness of the
vibration signals were extracted and used as health indica-
tors, as they exhibited clear trends of pump degradation. For
instance, Figure. 4 shows an example full trend in a pump
run-to-failure test using vibration signal RMS values.

Due to the high rate at which data are captured (100 Hz),
for each extracted feature, a circular buffer is implemented

FIGURE 4. Pump degradation trend example.

to allow for retaining only the most up-to-date values of
RMS, Peak-to-Peak vibration, Kurtosis, and Skewness over
a predefined period of pump operation. If for instance the
predefined period is 1 hour of operation, a new data value will
overwrite one that is 1 hour old. The buffered data are split
into a batch of size n that includes the newest sample and a
baseline of 1 to n − 1 samples. These data are then used to
detect degradation onset, compute confidence intervals, and
estimate overall pump health percent.

3) DEGRADATION ONSET DETECTION ALGORITHM

Algorithm 1: Degradation Onset Detection Algorithm
Input : sensor data (e.g., vibration data)
Output: degradation onset detection

1 initial_base_size=100;
2 batch_size=30;
3 base← data(0 : initial_base_size);
4 batch← data(initial_base_size + 1 : (initial_base_size
+ batch_size));

5 while in production state do
6 Compute the feature vector

F = {Kurtosis,Rms,Peak2Peak, Skewness}, for
both the baseline and batch data;

7 forall features fi ∈ F do
8 µ

fi
base =

1
len(base)

∑len(base)
j=1 fij;

9 σ
fi
base = ( 1

len(base)−1

∑len(base)
j=1 |Fij − µ

f
base|

2)1/2;

10 µ
fi
batch =

1
len(batch)

∑len(batch)
j=1 fij;

11 if µfibatch > (µfibase + 3× σ fibase) then
12 Onset fi ← 1;
13 end
14 if Onset == 1 in at least two features then
15 Degradation Onset← TRUE;
16 else
17 Slide batch with the new data point;
18 Extend base with the previous data point;
19 end
20 end
21 end
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Algorithm 1 describes the steps for the pump DT to detect
degradation onset. The algorithm uses a moving average con-
cept that consists of the following. For each health indicator
fi in F = {RMS,Peak2Peak,Kurtosis, Skewness}, a batch
window W fi of n newest health indicator values is set up
and the mean µfibatch of these n values in the window W fi is
calculated. At the same time, the mean µfibase and the standard
deviation σ fibase of all of the values (baseline) of fi seen before
W fi are calculated as well. The DT degradation onset detec-
tion algorithm uses a statistic approach that assumes that the
distribution of each of the features fi ∈ F in the pump healthy
state is approximately normal. In this case, about 99.7% of
the data points should lie within three standard deviations of
the baseline mean value. Therefore, a dynamic threshold is
set as

µ
fi
batch < µ

fi
base + 3× σ fibase (1)

As the window W fi moves, the mean value of the batch
window µ

fi
batch is continuously compared to the mean of the

values in the baseline µfibaseline. Degradation onset is detected
when the mean value of the batch window is above the
threshold in at least two condition monitoring features fi in
F . Note that the detection rule can be relaxed or constrained
by the decision maker (for instance, degradation onset can be
classified as when the mean value of a single feature is above
the threshold, or more robustly, once all of the features are
above the threshold).

4) CONFIDENCE INTERVAL MODEL
A Confidence Interval (CI) estimate is associated with the
degradation onset detection and health state classification.
The CI estimate is calculated from the sample data to deter-
mine the range likely to contain the population parameter
(mean, standard deviation) of interest. The CI is determined
by calculating the probability that themean of the batchµbatch
data falls within the µbase + 3× σbase range, which contains
the healthy data population. A statistical model is used to find
the number of standard deviations between the mean of the
batch data distribution and the third standard deviation of the
baseline distribution as follows:

A =
(µbase + 3× σbase)− µbatch

σbatch
(2)

The CI is then found by evaluating the normal cumulative
distribution function of the values in A.

5) DECISION MAKING MODEL
The decision making model consists of a state machine that
classifies the health state of the pump and provides a health
percentage indication (see, Fig. 5). As long as a degradation
onset is not detected, the state machine is at its initial state,
where it reports a healthy state with a 100% health indica-
tion. At the same time, the CI associated with the health
state and percent is reported by the CI computation model.
When degradation onset occurs, the state machine transitions
to the degrading state. For the studied system, degradation

FIGURE 5. Pump DT decision maker’s state machine.

FIGURE 6. Process scheme.

was observed to be linear in the data (see, Fig. 4), thus,
a linear model was defined to estimate the health percent
while the pump is in the degrading state.When themean value
of the condition monitoring feature reaches a very high limit,
the state machine transitions to a faulty state. The param-
eters (e.g., the high level limit of the condition monitoring
feature) for the linear model can be learned from data or
adjusted by the user. The state machine can be manually
triggered to enable the transition to a maintenance state from
the degrading and faulty states to clear the degradation before
going back to the initial state (normal operation state) after a
maintenance action is performed on the pump.

C. PROCESS PERFORMANCE MONITORING DT
1) CONCEPT
The purpose of the process performance monitoring DT is to
asses a control loop in terms of set-point tracking evaluation,
process anomaly detection, and process health percentage
estimation with confidence intervals.

A schematic of a control loop in the system is illustrated
in Fig. 6. The monitored process variable is the flow rate.
The loop consists of forward flow and bypass flow branches
that are controlled with a PID controller such that the control
commands to the two branches add up to a constant.

The process performance monitoring DT uses data from
the measured flow rate, set-points, and the controller com-
mand to identify any deviations from the expected normal
behaviors and classify abnormal behaviors. The DT uses a
model that outputs a set-point tracking index, which is an
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evaluation of whether the measured flow rate matches the set-
point or not with a confidence interval.

The DT decision making model uses the output of the
process DT model as well as the output of the PID per-
formance monitoring DT model, which will be described
in section IV-D, to detect and classify process anomalies.
Thus, the decision making model of the DT will be discussed
after the PID performance monitoring DT is introduced in
section IV-D.

2) PROCESS DT MODEL
The process DT uses Algorithm 2 to check whether the mea-
sured flow rate matches the input set-point or not. The algo-
rithm mainly monitors the flow rate in the production steady
state. During the production state, the DT model buffers flow
data sampled at 100 Hz over a one minute period batch and
compares them to the actual set-point with limit bounds set
at three standard deviations from the set-point value. The
standard deviation is calculated from the measured flow rate
variability. If the flow rate is within the limit bounds, then
the algorithm reports that the behavior is normal through
the tracking index. Else, the DT model reports an abnormal
behavior (i.e., flow rate does not match the set-point ).

Algorithm 2: Set-Point Tracking Assessment Algorithm
Input : set-point (sp = Flow_Cmd_SV)

measured flow rate (Flw = FM2_VF)
Output: tracking vs not tracking index (Flw_Idx)

1 while in production state do
2 foreach batch of a 1 minute period do
3 Get all measured Flw values;
4 µFlw =

1
N

∑N
i=1 Flwi;

5 σFlw = ( 1
N−1

∑N
i=1 |Flwi − µFlw|

2)1/2;
6 UL = sp+ 3× σFlw;
7 LL = sp− 3× σFlw;
8 FlwErr = sp− µFM2_VF ;
9 if FlwErr < LL || FlwErr > UL then
10 Flw_Idx ← 1;
11 end
12 else
13 Flw_Idx ← 0;
14 end
15 end
16 end

Aconfidence interval associatedwith the set-point tracking
index is estimated in a similar way to the pumpDT confidence
interval (see section IV-B4). It is calculated by evaluating a
normal cumulative distribution function for the values of the
range determined by how far the mean of the batch data is
from the limit of three standard deviations from the set-point.

D. CONTROLLER PERFORMANCE MONITORING DT
1) CONCEPT
The purpose of the PID controller performance monitoring
DT is to assess a control loop in terms of control behavior

evaluation. The PID controller output is monitored by using a
control command prediction model to evaluate the controller
output for a given behavior. This model uses the input set-
point to predict the output of the PID controller provided to
the control valve.

The output of the prediction model is combined with
the output of the process DT model to detect process and
controller anomalies. Details about these combinations will
be discussed in the process/controller DTs decision making
subsection (Section IV-E).

2) DT MODEL
The PID performancemonitoringDT uses amachine learning
model that provides an indication on whether the control
command is as expected for a given behavior or not. Expected
normal behaviors are learned from historical normal oper-
ation data. For instance, Figure 7 shows example normal
operation data used to train the prediction machine learning
model. It can be observed from Figure 7 that the relationship
between the set-point and the PID controller output is a
linear relationship. Linear regression is a machine learning
algorithm commonly used to find the relationship between
a dependent variable Y and input variables xi = x1, . . . , xn
for some constants b (intercept) and a (linear regression
coefficient).

A linear regressionmodel is developed to predict the output
of the PID controller at a given set-point. The problem of
predicting the controller output is described as follows. Given
a set of data points D = {(x(1), y(1)), . . . , (x(n), y(n))} with
x(i) and y(i) ∈ R for n = 1, . . . ,m, the goal is to predict
the output ŷ ∈ R, the PID controller output CV2_SV , to a
new input x̂ ∈ R, a new set-point Flow_Cmd_VF . A linear
regression model y = a×x+b is used for the prediction. The
linear coefficient a is learned from the data. To estimate the
parameters that yield theminimum variancewith zero bias for
the estimate, minimization of the least squares error between
the values predicted by the model, a(n), and the actual target
outputs y(n) for each data point is used. Finding the regression
coefficient a(n) is to minimise

2 = argmin
a

1
n

n∑
i=0

(y(i) − x(i)a(i))2 (3)

The prediction model has been trained and validated using
sets of normal operation data. The model is then used to
predict the output of the PID controller for a given set-point
(the C_Predict function) within Algorithm 3.
The PID controller performance DT uses Algorithm 3 to

monitor the action of the controller in production steady
states. In a similar fashion to the process DT, a one minute
batch of PID controller data is accumulated and compared to
the control output predicted by the machine learning model.
If the actual control commandmatches the predicted one, then
Algorithm 3 reports that the behavior is normal through the
control index. Else, the controller DT model reports that the
controller is excessively compensating, which is then used in
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FIGURE 7. Example normal operation data for training the the machine
learning model.

Algorithm 3: PID Controller Action Assessment Algo-
rithm
Input : set-point (sp = Flow_Cmd_SV)

PID controller output (C = CV2_SV )
Output: normal vs excessive control index (C_Idx)

1 N = 60(s) × 100(Hz) ;
2 while in production state do
3 foreach batch of a 1 minute period do
4 Get all measured C values;
5 Ĉ = C_Predict(sp);
6 µC =

1
N

∑N
i=1 Ci;

7 σC = ( 1
N−1

∑N
i=1 |Ci − µC |

2)1/2;
8 UL = Ĉ + 3× σC ;
9 LL = Ĉ − 3× σC ;
10 CErr = µC − µĈ ;
11 if CErr < LL || CErr > UL then
12 C_Idx ← 1;
13 end
14 else
15 C_Idx ← 0;
16 end
17 end
18 end

the decision making part to detect and classify process and/or
controller anomalies.

A confidence interval is associated with the control index
that the controller DT outputs to the decision maker. The
confidence interval is calculated in a similar way to the pump
DT and process DT confidence intervals. It is calculated
by evaluating the normal cumulative distribution function
between the mean of the batch data and the limits at three
standard deviations from the mean of the predicted control
value.

E. PROCESS/CONTROLLER DTs AGGREGATION FOR
DECISION MAKING
The decision making model combines the outputs of the
process and controller DT models to detect and classify
behaviors. Figure 8 shows the concept of the decision making
model. Decisions are made as follows:

• If the controller output is as expected (from the predic-
tionmodel of the controller DT) for a given behavior and
the set-point is tracked (from the process DTmodel), the
decision making model reports a normal behavior and
confidence intervals for both the process and controller
indexes.

• If the controller is excessively compensating (i.e., the
controller is providing more control than expected for
a given behavior), and the set-point is tracked, then a
process anomaly is detected and classified. This first
type of process anomaly is described as an anomaly
that the controller can compensate. An example of this
anomaly is a small leakage in the forward flow loop.

• If the controller is excessively compensating, the set-
point is not tracked, and the controller is railed (i.e., con-
troller hits its maximum and still cannot compensate),
then a process anomaly is detected and classified and
the controller DT indicates that the controller is railed.
This second type of process anomaly is described as an
anomaly that the controller cannot compensate for as it
hit its maximum. An example of this anomaly could be
due to a control valve clogging.

• If the control command is different than predicted, the
set-point is not tracked, and the controller is not railed,
then a controller anomaly is detected. Note that this
could be a controller and process anomaly. Currently,
we focus on a controller anomaly.

As shown in Fig. 8, the overall process/controller DT
outputs include, process health index, controller performance
index, process anomaly detection, controller anomaly detec-
tion, process health percentage, controller health percentage,
and confidence intervals. Health percentages are estimated
based on the process and control health indexes.

The next section describes how all the DT outputs are
leveraged to provide value, i.e. how the outputs are combined
together to assign recommendations to the user and thus
realize a predictive maintenance DT solution.

V. LEVERAGING THE DT OUTPUTS FOR PREDICTIVE
MAINTENANCE
DTs for live monitoring may be integrated within a manufac-
turing line to support operations and system sustainment via
quality prediction, operations optimization, predictive main-
tenance, and anomaly detection. Experimental data generated
by the emulated process plant described in Section III are
used to demonstrate the applicability of the developed DT
framework. The graphical user interface shown in Fig. 11
provides performance monitoring summary for equipment
(pump), process (flow-rate), and control (PID controller).
The pump performance monitoring DT provides an anomaly
detection indication (detection of when degradation onset
occurs), a state classification, a health percentage indication,
and a confidence interval associated with the state classi-
fication. Figure 9 shows the output of Algorithm 1 for the
feature ‘‘Skewness’’. The algorithm used dynamic thresholds

VOLUME 10, 2022 60831



Y. Qamsane et al.: OPA- and DT-Based Performance Monitoring of a Process Manufacturing System

FIGURE 8. The decision making component for the process and controller DTs.

calculated by a moving window. The mean value of the
batch window was continuously compared to the mean of the
values in the baseline (all seen data). Degradation onset using
‘‘Skewness’’ was detected when the mean value of the batch
window breached the dynamic thresholds.

Pump degradation onset is reported when at least two con-
dition monitoring features detect its occurrence. Figure 10.
shows the values of the four features used by Algorithm 1
to detect the occurrence of pump degradation onset over the
course of a normal operation (in green) and a run-to-fail (in
red) tests. For each feature, the pump remained healthy for
the duration of the normal operation test, while it showed
severe signs of degradation after the run-to-fail test. In the
run-to-fail test, pump degradation onset event occurrence
was confirmed after approximately 275 hours of operation
with the four features. After the degradation onset event hap-
pens, the pump DT switches to the ‘‘Degrading state’’ (see
Figure. 5). In parallel to Algorithm 1, a submodel is calcu-
lating the detection (state classification) confidence interval
using Equation 2. In the user interface shown in Fig. 11(a),
the unit PUMP1 Health displays the outputs of the pump
performancemonitoring DT. The state classification is shown
through three colors that the unit’s box could take, namely,
green for normal state, yellow for degrading state, and red for
degraded or failure state. The health percentage is shown in
the middle left box of the unit, and the confidence interval
is shown in the middle right gauge. The bottom box displays
the detected anomaly type. Fig. 11(b) shows a scenario where
the unit PUMP1 Health transitions to degrading state after a
degradation onset is detected by the DT. The unit’s box color
turns to yellow to indicate that the pump is in a degrading
state and that it needs attention. The health percentage esti-
mated by the DT is 67% and the confidence interval indicates

FIGURE 9. Pump degradation onset detection concept with signal
Skewness.

a high certainty that the pump is degrading. The bottom
box of the unit displays the detected anomaly as a bearing
wear. The machine operator or maintenance personnel can
use this information to immediately schedule just-in-time
maintenance before the pump fails.

The unit called Flow Unit1 Health shown in Fig. 11 dis-
plays the outputs of the process performance monitoring DT.
This DT provides indications of the health state, health per-
centage, anomaly type, and a confidence interval associated
with health state classification of the process. Similar to the
pump DT, the health state classification is shown through
three colors that the unit’s box could take, namely, green for
normal state, yellow for needs attention, and red for faulty
state. The health percentage is shown in the middle left box
of the unit, and the confidence interval is shown in the middle
right gauge. The bottom box displays the detected anomaly
type. Fig. 11(c) shows a scenario with a process anomaly
that the controller cannot compensate, i.e., the controller is
excessively compensating until it is railed (hits its maximum
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FIGURE 10. Pump degradation onset detection using four features.

compensation value), but the set-point is still not tracked.
In this case the unit’s box color turns to red to indicate that
the process is in a faulty state and that it needs maintenance.
TheDT classifies and displays this type of process anomaly in
the bottom box of the Flow Unit1 Health, estimates the health
percentage to 25%, and a confidence interval of this classifi-
cation is displayed in the middle right gauge. Additionally,
the controller DT shows that the controller is railed.

The unit called PID1 Performance shown in Fig. 11 dis-
plays the outputs of the PID control performance monitoring
DT. This DT provides an indication of whether the controller
is normally or excessively compensating, an indication on
when the controller is railed, a controller health percentage,
an indication of controller anomaly, and a confidence interval
associated with the controller state. Similar to the pump and
process DTs, the state classification is shown through three
colors on the unit’s box, namely, green for normal state,
yellow for needs attention, and red for faulty state. The health
percentage is shown in the middle left box of the unit, and
the confidence interval is shown in the middle right gauge.
The bottom box displays when the controller is railed or when
there is a controller anomaly. The controller is railed when it
hits its maximum control value but still cannot compensate.
A controller anomaly is detected when the set point is not
tracked and controller is not railed. Fig. 11(c) shows the
scenario where the PID1 Performance DT indicates the con-
troller is railed, but still can not compensate for the process to
match the set-point. This detection is used to help detect the
type of process anomaly.

The three DT functions support live monitoring of the
process manufacturing system. These DTs can be used by
the operators and maintenance personnel to schedule timely
maintenance actions and thus avoid unplanned downtime.
Figure. 11 shows different operating scenarios where the DT
functions support the operators and maintenance personnel
decision making about scheduling maintenance. The DTs
detect degradation onset which helps acting on the system

FIGURE 11. Digital Twin & Open Automation Framework Panels.
(a) Scenario where the pump, process, and controller are in healthy
states. (b) scenario where the pump is in a degrading state. (c) Scenario
where the controller is railed and the process is in a faulty state.

before failures occur. They also detect and classify anomalies,
which helps identify which parts of the system need attention.

VI. DISCUSSION
Given the equipment characteristics used for this work, vibra-
tion measurements were used in a univariate DT model
to monitor the equipment performance. Univariate model-
ing is often less comprehensive than multivariate model-
ing, and thus has limitations for performance monitoring
DTs. Although using only vibrationmeasurements may intro-
duce limitations to the performance monitoring solution, the
methodology for DT development presented in this paper
remains the same. This is possible because the DT uses one
or more modeling resources to support the calculation of its
output KPIs identified to fulfill the DT purpose, i.e., address
a manufacturing need. Hence, different parameters such as
temperature and pressure measurements can be introduced
to the DT solution in a multivariate modeling resource in a
similar way. The DT can combine univariate and multivariate
models to provide a comprehensive performance monitoring
solution.

For the process performance monitoring, the DT focused
on three types of anomalies (see Section IV-E) that we sim-
ulated in the emulated factory process. Additional anomaly
classes can be added to the emulated factory process and
the anomaly detection and classification modeling approach.
This will need additional historian data or anomalous behav-
ior characterization using data collected from similar equip-
ment and process. We note that a databank of manufacturing
equipment and process data, including nominal conditions
and failure cases, would have been very helpful for this
project and could be very helpful for future efforts.

The DT solution introduced in this paper is aimed at
anomaly detection and classification and predictive mainte-
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nance through equipment and process performance monitor-
ing. In the future we expect to develop more DT capabilities
to realize a system-wide DT framework that would allow for
live monitoring, scheduling optimization, yield optimization,
quality assessment, test What-If scenarios, and prescribe rec-
ommendations.

VII. CONCLUSION
In this article, we introduced a health monitoring approach
that uses OPA and DT technologies to provide a predictive
maintenance solution to help perform maintenance at the
right time and thus avoid unscheduled downtime resulting
from equipment and process failures. First, we presented
an emulated factory process that is a physics-based virtual
model of the manufacturing process system. This emulated
factory process is used as a stand-in for the actual manu-
facturing process during initial development and testing of
the DT functions prior to actual hardware being available.
The virtual model of the manufacturing process supports
the development of the DT functions for health monitor-
ing of the physical process manufacturing system. Second,
we presented three types of DT functions that were developed
and tested as a DT framework solution for monitoring the
health of equipment, process, and controller. Each of these
DT functions provide a set of KPIs that are used to address
the predictive maintenance purpose of the DT solution.

The emulated factory model and the DT functions were
implemented in a physical integration testing environment
platform as a proof-of-concept that demonstrates and eval-
uates OPA and DT technologies with cross-vendor systems.
The implementation showed that such an approach allows
manufacturers to develop, test, and evaluate new technologies
without interrupting production operations andwithout costly
research and development investments.

Future research directions include the following:

• Integrate the DT functions with the physical process
system in addition to the emulation when the hardware
becomes available, as DT technology emphasizes the
synchronization and consistency of the physical and
digital worlds.

• Extend the modeling approach used within the DTs to
include additional system measurements such as tem-
perature and pressure, etc. The objective is to combine
univariate and multivariate analyses for a more compre-
hensive health monitoring approach.

• Develop additional DT capabilities for the process man-
ufacturing system such as scheduling and yield opti-
mization, quality assessment, etc. in order to realize a
system-wide DT framework.
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